o

Dy Dok

St;:;_ékho_lm
University
Logic programming 11
Henrik Bostrém

Stockholm University

e Unification

e Goal reduction
LS
"..:1«3&’
St::;_ékhqlm
University

Substitution and instance

A substitution is a finite set of pairs on the form
x;/ t, where x; is a variable and t; is a term, and
x; # X; for all i # j, and x; does not occur in t; for
any i andj.

A term s is an instance of a term g if there is a
substitution 6 such that s = go.

s = father(abraham,isaac)
g = father(abraham,X)
0 = {X/isaac}

o

Dy Dok

- - St;:;_ékho_lm
More definitions University
A term t is a common instance of two terms
t; and t,, if there are substitutions 6, and 6,
such that t = t;6, = t,6,.
likes(romeo,juliet) is a common instance of
likes(X,juliet) and likes(X,Y).
A term s is more general than a term t, if tis
an instance of s but s is not an instance of t.
A term s is a variant of a term t, if s is an
instance of t and t is an instance of s.
s = likes(X,juliet) och t = likes(Y,juliet)
L Y
"..:1«3&’
L. Stockhol
Unifier University

A unifier 6 to two terms t; and t, is a substitution
such that t;6 = t,0.

If two terms have a unifier, they are said to unify.
p(f(X),Y) and p(W,g(W)) unify.

A unifier is:
0 = {W/f(X), Y/9(f(X))}

The common instance is:

p(f(X),g(f(X)))

LS
Stc;_ckho_lm
University

Most general unifier

The most general unifier (mgu) to two terms is a
unifier that results in the most general common
instance.

p(X,a) and p(Z,Y)

Substitution Common instance

{X/a, Z/a, Y/a} P(a,a)

{X/b, Z/b, Y/a} P(b,a)

{X/Z, Y/a} P(Z,a)

{Z/X, Y/a} P(X,a)
Y.
o

. . . S;:::;;ichqlm
Unification algorithm University

Input: two terms t;and t,

Output: an mgu 6 to tyand t, or ‘failure’
LetS = [t;=t,] and 6 = .

While S # [] do

Pick first equation E from S.
Call Handle-equation with E, S and 0,
which gives S and 0 or ‘failure' as output.

In the latter case, exit and return ‘failure’.
Return 0.

LS
Stc;_ckho_lm

Handle—equation University

Input: equation s = t, stack S and substitution 0
Output: stack S and substitution 0 or ‘failure'

1. If s and t are identical variables or
constants, then return S and 0

2. If siis a variable and t is a term*,
then replace s with t in the stack and 0
and add s/t to 0.

3. If tis a variable and s is a term,
then do the above conversely.

4. If s and t are compound terms, where
s = f(s4, ..., ;) and t = f(t,, ..., t,),
then put all s; = t; on the stack.

5. In all other cases, return ‘failure’.

*s must not occur in t - this is called the "occurs check"

LS
Stc;_ckho_lm
University

Composition

Let 91 = {Xl/sll ey Xn/sn} and 62 = {Y1/t11 ey Ym/tm}
be two substitutions such that x; # y; for all i and j,
and x; does not occur in t; for any i and j.

Then the composition Comp(6,,6,) of 6, and 6, =
{X1/5165, .y Xo/Sp05, Y1/t s Yo/t)

0, = {X/Y, Z/f(Y)} och 6, = {Y/a}
Comp(6,,6,) = {X/a, Z/f(a), Y/a}

o
) SiockHal
Goal-reduction University

Input: a logic program P = C1, ..., Ck and a goal G1, ..., Gn
Output: a substitution or 'no'.

If n=0 then return &.
i:=1
While i < k do

A':- B1, ..., Bm := a variant of Ci with new variable names
If there is an mgu 6 of G1 and A' then

Call Goal-reduction with P, (B1, ..., Bm, G2, ..., Gn)6.

If a substitution o is returned then return Comp(0,c).

i:=i+1

Return 'no'.
LS
"..;1«3&’
Stockholm
University

Example

append([],Xs,Xs).

append([X]|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

:- append([a,b],[c,d],L). {X/a, Xs/[b], Ys/[c,d], L/[alZs]}

;- append([b],[c,d],Zs). {X1/b, Xs1/[], Ys1/[c,d],
Zs/[b|Zs1]}

:- append([],[c,d],Zs1). {Zs1/[c,d], Xs2/[c,d]}

0

