
1

Logic programming II

• Unification

• Goal reduction

Henrik Boström
Stockholm University

Substitution and instance
A substitution is a finite set of pairs on the form

xi/ ti, where xi is a variable and ti is a term, and

xi xj for all i j, and xi does not occur in tj for

any i and j.

A term s is an instance of a term g if there is a

substitution such that s = gsubstitution such that s = g.

s = father(abraham,isaac)

g = father(abraham,X)

 = {X/isaac}

2

A term t is a common instance of two terms
t1 and t2, if there are substitutions 1 and 2

More definitions

t1 and t2, if there are substitutions 1 and 2

such that t = t11 = t22.

likes(romeo,juliet) is a common instance of
likes(X,juliet) and likes(X,Y).

A term s is more general than a term t, if t is
an instance of s but s is not an instance of t.
A term s is a variant of a term t, if s is an
instance of t and t is an instance of s.

s = likes(X,juliet) och t = likes(Y,juliet)

Unifier

A unifier to two terms t1 and t2 is a substitution
such that t1 = t2such that t1 = t2.

If two terms have a unifier, they are said to unify.

p(f(X),Y) and p(W,g(W)) unify.

A unifier is:
 = {W/f(X), Y/g(f(X))}

The common instance is:
p(f(X),g(f(X)))

3

The most general unifier (mgu) to two terms is a
ifi th t lt i th t l

Most general unifier

unifier that results in the most general common
instance.

p(X,a) and p(Z,Y)

Substitution Common instance
{X/a Z/a Y/a} P(a a){X/a, Z/a, Y/a} P(a,a)
{X/b, Z/b, Y/a} P(b,a)
{X/Z, Y/a} P(Z,a)
{Z/X, Y/a} P(X,a)

Unification algorithm

Input: two terms t1and t2

Output: an mgu to t and t or ’failure’Output: an mgu to t1and t2 or ’failure’

Let S = [t1=t2] and =

While S ≠ [] do

Pick first equation E from S.
Call Handle-equation with E, S and ,
which gives S and or ’failure' as output.

In the latter case, exit and return ’failure’.

Return .

4

Handle-equation
Input: equation s = t, stack S and substitution
Output: stack S and substitution or ’failure'Output: stack S and substitution or failure
1. If s and t are identical variables or

constants, then return S and
2. If s is a variable and t is a term*,

then replace s with t in the stack and
and add s/t to .

3. If t is a variable and s is a term,
then do the above converselythen do the above conversely.

4. If s and t are compound terms, where
s = f(s1, ..., sn) and t = f(t1, ..., tn),
then put all si = ti on the stack.

5. In all other cases, return ’failure'.

*s must not occur in t – this is called the "occurs check"

Composition

Let 1 = {x1/s1, ..., xn/sn} and 2 = {y1/t1, ..., ym/tm} Let 1 {x1/s1, ..., xn/sn} and 2 {y1/t1, ..., ym/tm}
be two substitutions such that xi yj for all i and j,
and xi does not occur in tj for any i and j.

Then the composition Comp(1,2) of 1 and 2 =
{x1/s12, ..., xn/sn2, y1/t1, ..., ym/tm}

1 = {X/Y, Z/f(Y)} och 2 = {Y/a}
Comp(1,2) = {X/a, Z/f(a), Y/a}

5

Goal-reduction
Input: a logic program P = C1, ..., Ck and a goal G1, ..., Gn
Output: a substitution or 'no'.p

If n=0 then return .
i := 1
While i k do

A' :- B1, ..., Bm := a variant of Ci with new variable names
If there is an mgu of G1 and A' then

Call Goal-reduction with P (B1 Bm G2 Gn)Call Goal-reduction with P, (B1, ..., Bm, G2, ..., Gn).
If a substitution is returned then return Comp(

i := i+1
Return 'no'.

Example

append([],Xs,Xs).append([],Xs,Xs).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

:- append([a,b],[c,d],L). {X/a, Xs/[b], Ys/[c,d], L/[a|Zs]}

:- append([b],[c,d],Zs). {X1/b, Xs1/[], Ys1/[c,d],
Zs/[b|Zs1]}

:- append([],[c,d],Zs1). {Zs1/[c,d], Xs2/[c,d]}

