Logic programming II

Henrik Boström
Stockholm University

- Unification
- Goal reduction

Stockholm University

Substitution and instance

A substitution is a finite set of pairs on the form x_{i} / t_{i}, where x_{i} is a variable and t_{i} is a term, and $x_{i} \neq x_{j}$ for all $i \neq j$, and x_{i} does not occur in t_{j} for any i and j .

A term s is an instance of a term g if there is a substitution θ such that $\mathrm{s}=\mathrm{g} \theta$.
$\mathrm{s}=$ father(abraham,isaac)
$\mathrm{g}=$ father(abraham,X)
$\theta=\{X /$ isaac $\}$

More definitions

A term t is a common instance of two terms t_{1} and t_{2}, if there are substitutions θ_{1} and θ_{2} such that $t=t_{1} \theta_{1}=t_{2} \theta_{2}$.
likes(romeo,juliet) is a common instance of likes(X,juliet) and likes(X,Y).

A term s is more general than a term t, if t is an instance of s but s is not an instance of t. A term s is a variant of a term t, if s is an instance of t and t is an instance of s.
$s=\operatorname{likes}(X$, juliet $)$ och $t=$ likes (Y, juliet $)$

Unifier

A unifier θ to two terms t_{1} and t_{2} is a substitution such that $\mathrm{t}_{1} \theta=\mathrm{t}_{2} \theta$.

If two terms have a unifier, they are said to unify.
$p(f(X), Y)$ and $p(W, g(W))$ unify.
A unifier is:
$\theta=\{W / f(X), Y / g(f(X))\}$
The common instance is:
$p(f(X), g(f(X)))$

Most general unifier

The most general unifier (mgu) to two terms is a unifier that results in the most general common instance.
$p(X, a)$ and $p(Z, Y)$

Substitution
\{X/a, Z/a, Y/a\}
$\{X / b, Z / b, Y / a\}$
$\{X / Z, Y / a\}$
\{Z/X, Y/a\}

Common instance
$P(a, a)$
$P(b, a)$
$P(Z, a)$
$P(X, a)$

Unification algorithm

Input: two terms t_{1} and t_{2}
Output: an mgu θ to t_{1} and t_{2} or 'failure'
Let $\mathrm{S}=\left[\mathrm{t}_{1}=\mathrm{t}_{2}\right]$ and $\theta=\varnothing$.
While $S \neq[]$ do
Pick first equation E from S.
Call Handle-equation with E, S and θ, which gives S and θ or 'failure' as output.
In the latter case, exit and return 'failure'.
Return θ.

Handle-equation

Input: equation $s=t$, stack S and substitution θ
Output: stack S and substitution θ or 'failure'

1. If s and t are identical variables or constants, then return S and θ
2. If s is a variable and t is a term*, then replace s with t in the stack and θ and add s/t to θ.
3. If t is a variable and s is a term, then do the above conversely.
4. If s and t are compound terms, where $s=f\left(s_{1}, \ldots, s_{n}\right)$ and $t=f\left(t_{1}, \ldots, t_{n}\right)$, then put all $s_{i}=t_{i}$ on the stack.
5. In all other cases, return 'failure'.
*s must not occur in t - this is called the "occurs check"

Composition

Let $\theta_{1}=\left\{x_{1} / s_{1}, \ldots, x_{n} / s_{n}\right\}$ and $\theta_{2}=\left\{y_{1} / t_{1}, \ldots, y_{m} / t_{m}\right\}$ be two substitutions such that $x_{i} \neq y_{j}$ for all i and j, and x_{i} does not occur in t_{j} for any i and j.

Then the composition $\operatorname{Comp}\left(\theta_{1}, \theta_{2}\right)$ of θ_{1} and $\theta_{2}=$ $\left\{x_{1} / s_{1} \theta_{2}, \ldots, x_{n} / s_{n} \theta_{2}, y_{1} / t_{1}, \ldots, y_{m} / t_{m}\right\}$
$\theta_{1}=\{X / Y, Z / f(Y)\}$ och $\theta_{2}=\{Y / a\}$
$\operatorname{Comp}\left(\theta_{1}, \theta_{2}\right)=\{X / a, Z / f(a), Y / a\}$

Goal-reduction

Input: a logic program P = C1, ..., Ck and a goal G1, ..., Gn Output: a substitution or 'no'.

If $\mathrm{n}=0$ then return \varnothing.
i := 1
While $\mathrm{i} \leq \mathrm{k}$ do
A^{\prime} :- $\mathrm{B} 1, \ldots, \mathrm{Bm}:=\mathrm{a}$ variant of Ci with new variable names If there is an mgu θ of G1 and A^{\prime} then

Call Goal-reduction with P, (B1, ..., Bm, G2, ..., Gn) θ. If a substitution σ is returned then return $\operatorname{Comp}(\theta, \sigma)$.
$\mathrm{i}:=\mathrm{i}+1$
Return 'no'.

Example

```
append([],Xs,Xs).
append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).
:- append([a,b],[c,d],L). {X/a,Xs/[b], Ys/[c,d], L/[a|Zs]}
:- append([b],[c,d],Zs). {X1/b, Xs1/[], Ys1/[c,d],
    Zs/[b|Zs1]}
:- append([],[c,d],Zs1). {Zs1/[c,d],Xs2/[c,d]}
```

